May 2, 2013 by m1k3y   8 notes
Rather than simply adding electronics to an ear, the team decided to try and integrate the two from the start. They 3-D printed hydrogel — a polymer-based gel often used as scaffolding in tissue engineering – with calf cells, and weaved in silver nanoparticles to create an built-in antenna coil that replaces the cochlea. The calf cells matured to become cartilage and the electronics were then encased in a highly supportive ear that mirrors the complex build of the real thing.

…

It might not be the prettiest of inventions, looking a little like Freddie Krueger’s lost ear, but this bionic creation can pick up radio frequencies beyond human abilities, after the antenna is attached to electrodes.

“The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music,” the authors write in a paper on the study in Nano Letters.

This is really a proof of concept endeavor for the Princeton team. It’s not planning on sewing its bionic ears on to human heads anytime soon — though research leader Michael McAlpine says it could, in theory, be connected to nerve endings like hearing aids are. For now, the challenge they have set themselves is to generate new techniques for building potential cyborg parts.

“Biological structures are soft and squishy, composed mostly of water and organic molecules, while conventional electronic devices are hard and dry, composed mainly of metals, semiconductors and inorganic dielectrics,” coauthor on the paper David Gracias from John Hopkins said. “The differences in physical and chemical properties between these two material classes could not be any more pronounced.”

…

“This field has the potential to generate customized replacement parts for the human body, or even create organs containing capabilities beyond what human biology ordinarily provides,” the paper states.

In future incarnations, the team hopes to install pressure-sensitive electronic sensors so that it might hear acoustic sounds similar to how a real ear does.

Rather than simply adding electronics to an ear, the team decided to try and integrate the two from the start. They 3-D printed hydrogel — a polymer-based gel often used as scaffolding in tissue engineering – with calf cells, and weaved in silver nanoparticles to create an built-in antenna coil that replaces the cochlea. The calf cells matured to become cartilage and the electronics were then encased in a highly supportive ear that mirrors the complex build of the real thing.

It might not be the prettiest of inventions, looking a little like Freddie Krueger’s lost ear, but this bionic creation can pick up radio frequencies beyond human abilities, after the antenna is attached to electrodes.

“The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music,” the authors write in a paper on the study in Nano Letters.

This is really a proof of concept endeavor for the Princeton team. It’s not planning on sewing its bionic ears on to human heads anytime soon — though research leader Michael McAlpine says it could, in theory, be connected to nerve endings like hearing aids are. For now, the challenge they have set themselves is to generate new techniques for building potential cyborg parts.

“Biological structures are soft and squishy, composed mostly of water and organic molecules, while conventional electronic devices are hard and dry, composed mainly of metals, semiconductors and inorganic dielectrics,” coauthor on the paper David Gracias from John Hopkins said. “The differences in physical and chemical properties between these two material classes could not be any more pronounced.”

“This field has the potential to generate customized replacement parts for the human body, or even create organs containing capabilities beyond what human biology ordinarily provides,” the paper states.

In future incarnations, the team hopes to install pressure-sensitive electronic sensors so that it might hear acoustic sounds similar to how a real ear does.

  1. 3dfutureprinting reblogged this from grinderbot
  2. boxotron reblogged this from cyber-renaissance
  3. cyber-renaissance reblogged this from grinderbot
  4. treid480 reblogged this from grinderbot
  5. grinderbot posted this